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Abstract : In order to understand and to reconstruct the shape of many objects of 
the geometric world, mathematicians have focused their attention on singularities 
and deformations. The purpose of this article is to present these usual topological 
concepts and tools to artists being a priori unfamiliar with mathematics, with the 
hope that new beautiful creations will appear in the artistic world. 

1. Generalities

1.1 Introduction

Artists have often used various kinds of objects in their com-
position. Mostly images of real objects. All had in common some 
level of style and representation, pushing forth in their mind the pro-
cess of stylization. Some created shapes of an abstract nature, as in 
Egyptian friezes, Roman tilings, or Celtic knots. In essence, there 
have been two recurring threads in the art of decoration, spirals and 
tilings [1]. 

Artists did not develop mathematical theories from their con-
structs  except  during  the  Aeschyleus  time  and  the  Renaissance. 
However,  we may consider  them as  precursors  of  those  theories. 
Nowadays, many artists are familiar with the larger classes of math-
ematical objects that appear in their compositions. Using the power 
of their imagination and the tools with which they defined those ob-
jects, could contribute to enrich the catalogue of mathematical ob-
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jects and the content of their work for our contemporaries and future 
audiences.

The purpose of this presentation is to give a general introduc-
tion to various construction principles frequently used by mathem-
aticians and artists as well.  It will only focus on the first level of 
those principles to avoid technical difficulties and complex mathem-
atical theories.

However,  we hope some artists will find the following in-
formation useful for their work. We will address in particular those 
who, for whatever reason, are not using the full power of the com-
puting  environment  and  professional  software.  Salvador  Dali’s 
pictorial  legacy is a very good example of the way mathematical 
knowledge can be used by an artist to create paintings of indisput-
able originality. Artworks related to the cubism expression, such as 
with the imaginative Chagall, are another example of the potential of 
human creativity. 

Our approach will focus on the topological perspective only, 
as this rather qualitative choice carries an intrinsic insufficient ele-
ment  of precision.  Algebraic  and analytical approaches avoid this 
difficulty but need some mathematical knowledge and training. An 
advanced introduction to some of those useful techniques was pub-
lished recently in the Mars issue of the Bulletin of the American 
Mathematical Society [2]. It should be noted that these structural and 
quantitative techniques have yet to be developed to reach the full po-
tential of the shapes that are suggested by the qualitative approach. 
Mathematicians could enrich this qualitative approach with quantit-
ative, numerical controls of all the deformations implied in the con-
struction  of  objects.  As  to  the  qualitative  approach,  the  specific 
mathematical  objects studied by George Francis  in  A Topological 
Picturebook [3] may also be useful to advanced readers. 

We presuppose that all readers understand the notion of (to-
pological) dimension1 of a space. Since this expose addresses artists 
and not mathematicians, most other terms will not have the same 
precise semantic of a larger, more global (mathematical) definition. 

1  The topological dimension of a point is 0, of a line, 1, of a surface 2, of our usu-
al space 3, of the space-time 4, etc .
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That choice should allow for a more immediate understanding of the 
narrative. 

In a broad sense, potters, sculptors and, in a more subtle way, 
painters will  be encouraged to find that they share with mathem-
aticians involved in geometry the use of similar processes, deforma-
tion and attachment being the most common. 

As for deformations, we shall divide them into two opposite 
types: expansion and restriction, each one being in turn divided into 
two opposite types, singular or regular. 

1.2 Shapes as a restricted class of mathematical objects 

In general terms, mathematical objects can be classified as 
follows: objects that can be visualized and objects that are too ab-
stract and too general to be a priori physically represented, such as 
categories or functors. 

In the following, we will focus only on the class of mathem-
atical objects of the first kind. 

Definition : Such mathematical objects will be given the shorter and 
generic name of “shape”. 

Mathematical artists use to deal with immersed or embedded 
1, 2 or 3¬dimensional shapes. Shapes of dimension one are mostly 
polygons such as triangles, classical curves as parabolas, knots or 
fractal lines. In dimension 2, the shapes derive mostly from poly-
topes,  tessellated surfaces,  minimal  surfaces,  topological  surfaces, 
algebraic surfaces. They are often used in their strict mathematical 
definition and representation as in convenient deformations. 

Using a  general  definition  of  mathematical  objects,  artists 
create their own shapes. To draw them, they use first a pencil or a 
pen or more directly, numerical symbols. 

There are two kinds of numbers: static ones, and dynamic ones. 
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-A static n-dimensional number is a collection (x1, …, xn) of n usual 
real numbers. Indeed, from the dynamic point of view, it represents a 
translation.
- A simple dynamic n-dimensional number is slightly more general. 
It represents a dilatation coupled with a rotation in an n-Euclidean 
space. When n = 2, it is simply a Chuquet number also called a com-
plex or a mixed number. One can do standard algebraic geometry 
with simple dynamic n-dimensional numbers that are adapted to the 
control of deformations, such as conformal and quasi conformal de-
formations in particular. 

We will  address first  those who opt  to  use the pencil  and 
brushes.

1.3 Characteristic features of a shape 

When one observes an object, the eye follows a trajectory, a 
path going from some significant part to another significant part of 
that object. That path has been defined as the “skeleton of the per-
cept”. The parts will be named singular. 

In other words, one of the most important characteristic of a 
shape is its set of singularities: intrinsic singularities and singularit-
ies seen from the point of view of the observer. Thus, any change on 
the singularities of the object is of great significance. 

It should be noted that in general, the appearance or disap-
pearance of a singularity or its modification has an important impact 
on  the  representation  of  the  object  since  local  or  even  global 
curvatures can be drastically changed. 

Curvatures are also fundamental characteristic features of a 
shape. Dramatic changes in curvatures happen on singular parts. 

These singular parts play an important role in the setting up 
of a work of art. They have both a strong significance and a semant-
ic significance. The thorn of a rose, the fang of a vampire, the point 
of a sword, the blade of a knife are typical singular shapes frequently 
inspiring fear or violence. They represent symbolic tools of protec-
tion and attack, of preservation of one’s integrity living in a danger-
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ous world. Because they are assigned an essential role in the preser-
vation of the self, they hold in our mind an ambiguous status. Acute 
angles are somehow aggressive. Drawings and paintings with many 
straight lines and sharp angles carry a connotation of rigidity and 
coldness. They also have something in common with the outline of a 
skeleton and define a kind of structural representation of the object 
they are associated with. 

Definition : A singular part within an object of standard dimension n 
is a subobject of dimension k strictly less than n, which may be con-
nected or not.

Such a singular part is characterized by some local properties 
of extremality of the object, like for instance the top of the head or 
the tip of a nose.

Image 1
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According to our definition,  a singular  part  can only be a 
point in a 1-dimensional object curve, while in a surface, which is a 
2-dimensionnal object, a singular part can consist of points and/or of 
portion of curve.
 

The neighbourhood of the singular part is of course said to be 
regular. What makes the difference between a regular domain and a 
singular one? 

Let us move our finger on the sculpture,  first on the head 
from the left to the right: we observe that the finger goes up until it  
reaches the top of the head, then it goes down. Thus, there is a dra-
matic change in the move of the finger when it reaches the top of 
head creating a singularity: it was going up, now it goes down. If we 
draw a tangent to the trajectory followed by the finger, the slope of 
this line is “up” (positive) when the finger is on the left, is “down” 
(negative) when the finger is on the right. 

Fig. 1

It is this kind of general phenomenon which is used to char-
acterize  a  singular  part:  “dramatic”,  “catastrophic”,  “sudden” 
changes in the directions of the tangent lines or planes in the imme-
diate surroundings of that singular part.

In a singular point,  a discontinuity occurs into the sign or 
into the value of the slopes of tangents belonging to the outer edge 
of that point. 

As a result, most of these singular parts can be obtained by a 
pinching process of the set of internal modifications and deforma-
tions of the object as described below.
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 2 Internal modifications 

2.1 Pinching 

Definition : We shall call pinching, denoted by Pn → k, the process of 
smooth deformation that transforms a regular domain of the shape of 
dimension n into a domain of a singular part of dimension k less 
than n. 

Indeed, a pinching process on any part of the object is ob-
tained by creating discontinuities into the sign or into the value of 
the slopes of tangents belonging to the surroundings of that part. 

On a curve,  pinching occurs at  points,  while  on a  surface 
pinching can occur at points or along curves taking the character of 
singular parts. 

Examples 1, Geometrical

Fig. 2.1

Such a singularity will be named  an outward or 
antibubblling singularity

Such a singularity will be named an 
inward or bubbling singularity
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Fig. 2.2

Examples 2           

This point is not a singular point : no change in the 
sign of the slopes of the tangents lines on the 
surrounding of the point, no sudden change in the 
values of theses slopes

The « north pole » of the circle is here a singular 
point : the sign of the slopes of the tangent lines on 
the  surrounding points changes

This point is singular : no change in the sign of the 
slopes, but dramatic change in their values

This point is singular : “dramatic” changes in the sign 
of the slopes and in their values

For curves, the angle ε
n
 between the two branches of the curve around the 

singularity characterizes partly the singularity. There are mainly two kinds of classical 
singularities, singularities of finite order  each time  ε

n
 is not null. When the angle is a 

multiple of 180° (which can be null), the singularity may be of finite order or even of 
infinite, transcendental order.

    two bubbling singularities

   antibubbling
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Fig. 3

Using antibubbling singularities, and indeed some other to-
pological  tools,  could  an  artist  have  created  the  following  lilac 
flower ? :

Image 2
Orchid : paphiopedium venustum

On the left and right of the flower, two antibubbling singularities
Example 3, an other geometrical object, the Eighty.

Take a tube, an hollow cylinder. You can pinch it along a generatrix, 
in a bubbling way, or in a antibubbling way. The original generatrix 

      Voyages sur la lune

suppress
introduce

ε
n
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becomes a singular line. Note the important reversible character of 
the operation.

Fig. 4

Consider the bubbling cylinder. You can make a second antibubbling 
pinching in such a way that the two singular generatrix can be con-
founded. You can even pinch locally the result into a singular point 
and paint it to obtain the following figure called the Eigthy:

Image 3
The Eigthy figure by E. Faber and H. Hauser

Other topological techniques allow to construct this figure.
Before leaving the usual notion of singularity, let us observe 

another kind of phenomenon. Suppose that some part of a curve be-
gins to vibrate more and more strongly. It may break into very small 

antibubbling cylinder
       bubbling cylinderStandard cylinder
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pieces,  getting  smaller  and  smaller  until  it  finally  dissolves  into 
points, making a continuous, quasi continuous or even a discrete set. 
We would call this phenomenon a fractal singularisation, and its res-
ult a fractal singularity. 

Fig. 5

Image 4
Mountain singularities

2.2  Inflations

There are two kinds of inflations, singular inflations and reg-
ular inflations. 
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The singular inflations are the most interesting : they are at-
tached to metamorphosis and the creation of new unexpected shapes 
and behaviours. 

Regular inflation are used in art  to trigger emotion on the 
mind of the observer and emphasize didactic messages: El Greco (in 
most of his works) stretches his characters’ features to express the 
yearning  of  the  soul  for  God.  Honoré  Daumiers’ caricatures  and 
Hieronymus Bosch’s figures, also represent two kinds of inflation. 

2.2.1 Singular inflations 

The pinching process has a converse we will call singular in-
flation. The use of the words “singular inflation” is restricted here to 
singularities. We are going to inflate singularities. 

Definition: Denoted by Ik → p, a singular inflation transforms a k-di-
mensional part into a p-dimensional part (k < p), the inflated part. 

Done suddenly, it will be here called a blowing-up2.

The inflated part is related to its singular generative part by a 
few properties among which a trivial but fundamental property: the 
singular generative part can be obtained from the inflated part by a 
continuous deformation leaving invariant the topological properties 
of the successive deformed parts, properties having an exceptional 
character for the singular part. 

Note : A pinching process compresses a part of dimension n 
into a part of lower dimension k. Usually, there might be many ac-
ceptable such parts of lower dimension, even when we restrict k to 
n-1. Additional constraints can of course reduce the amount of pos-
sibilities. 

A similar  assertion can be done concerning singular  infla-
tions : for instance a point can be inflated into a segment, a circle, a 
sphere, or a 2-disk, a 3-ball, etc. The general procedure to inflate an 

2 “ Blowing up” is a standard mathematical term (in French “éclate-
ment”).  Mathematicians call the inflated part  the “blowup” of the 
singular part.
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object is of course to go step by step and increase the dimension step 
by step.

Fig. 6
Singular inflations into circles of various sizes of one point

Examples 4 : In these two examples symbolized by I0 → 1, a singular 
point blows up into a circle or in a shape having the same topologic-
al properties as the circle.

                                    cone                       cylinder

Fig. 7.1
A singular point inflates into a circle

  

     ⇔
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Fig. 7.2
A singular point inflates into a circle

Example 5 : Note that in the two preceding cases, the singular point 
could even blow up into a disk, a two-dimensional object, which in 
turn can be flat, bubbling, antibubbling, and mixed. 

 

Singular inflation into an antibubbling disk  Singular inflation into a bubbling disk 
giving rise to a dome                                     giving rise to a crater

Fig. 8
Some singular inflations into a two-disk of the singular point or of the circle of the 

example 4

Note that when the 2-disk is not flat, it can be deformed into 
a tube open on one side, whose axis can be any non closed curve. 
The classification of knots can be used to classify these curves.

The artist will enjoy the drawing of such a tube nicely wind-
ing from and around the surface and the circle on which it arises. 
From that tube, fanciful horns are sometimes growing up or vanish-
ing, throwing fantastic beams of light which illuminate an unexpec-
ted choreography.

            Sleeping volcano
Antibubbling singularity on a 

surface
    Active volcano
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The tube may simply show an undulation,  that  disappears 
when the viewer moves away from the initial singularity :

Fig. 9
The dome of figure 8, left, can be deformed into these topologically equivalent tubes

Example 6  : In the previous example the singular point blows up 
into a single 2-disk. But we may also consider the possibility that 
this  point  blows  up into  a multiplicity  of  disks  having  the  same 
circle as boundary. There are particular cases of such an occurrence. 
We will select the simplest one, when the multiplicity is two, one 
disk being bubbling, the other one antibubbling : we get a 2-sphere 
S2 since the 2-sphere can be constructed by identifying the circles 
which borders two disks.

Indeed, the singular point can be blown up into the 2-sphere 
since,  conversely,  that  sphere  can  be  continuously  shrink  into  a 
point. Note that again, from our topological point of view, the sphere 
can be replaced by any shape having the same topological proper-
ties.

Fig. 10
Singular inflations of a singular point with multiplicity 2

left two bubbling, right one bubbling and one antibubbling 
If exceptionally there is a continuous infinity of this type of 

double expansion, the spheres may completely fill a bowl represen-
ted here by the symbol D3.
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Example 7: Let's take an orange as the physical  representation of 
such a bowl and the 2-sphere  S2 as its boundary. We may consider 
that boundary as the singular part of the bowl.

There are two main ways to inflate the 2-sphere, either in-
wards towards the centre of the bowl, or outwards. Any such singu-
lar inflation may be partial or complete. A complete inwards infla-
tion of the 2-sphere is the 3-ball D3. A complete outwards inflation 
fills up the usual 3-space leaving an hole that the 14 previous 3-ball 
would fill up. A partial inflation creates an object that looks like the 
3-ball with an hollow in its interior.

Fig. 11
Some different inflations of the border of the usual 2-sphere

This partial inflation is also called a thickening. We would 
rather  call  it  a  standard  thickening.  It  is  usually  described  as  a 
Cartesian product : let B the boundary, I an interval, the standard 
thickening is described as the product B x I.

For  instance,  if  T is  a  hollow  cylinder  or  a  tube  without 
thickness, T x I will denote a tube whose local thickness is I ; or if D 
is a 3- usual ball whose border is an usual sphere of radius 1, the 
standard thickness of  D  will  be a  3-ball  whose radius  is  1  + the 
length of the interval I.

More  generally,  let  C be  any other  object  :  the  Cartesian 
product B x C may be understood as a thickening of B through C.

2.2.2 Regular inflations and desinflations

Complete inwards inflation

Complete outawards inflation

Section of  a partial inflation through the centre of the sphere
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These transformations can be global  or local.  Optical illu-
sions, anamorphoses introduce increasing or decreasing local sizes 
through lengths and twists. The perspective theory has formalized 
some of those transformations of size that do not change the topolo-
gical properties of the shape. Inflation is an important component of 
visual communication expressing power, will, and hopes.

Foldings are frequently used as a first step in the process of 
developing transformations.

2.3 Folding

Definition : Folding is the operation by which one can act 
on a part of an object and change the local curvature along the points 
of that part, and eventually the size of that part.

There are two types of foldings : continuous foldings, and 
singular foldings as in the art of origami - a paper folding methosd 
The folding of a domain is continuous when the direction of the per-
pendicular to the tangent line or plane along any transversal line to 
the domain changes continuously. If a discontinuity appears some-
where in that change of direction, the folding is locally singular.
Examples 8 :

Fig. 12
Simple geometrical illustrations of the two kinds of foldings

In 2-dimension, when drawing on a sheet of paper, the folding of a 
line can use not only changes of its length but its rotations as well. In 
3-dimension, the folding of a  line uses changes of its  length and 
twists which are couples of simultaneous rotations in two non paral-
lel planes. Note the semantic and artistic importance of twists, ex-

Continuous foldings : the normal to the tangent lines changes continuously

discontinuous foldings
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pressing at once force and motion as the works of Michelangelo and 
El Greco titled Laocoön.

Examples of geometrical twists as in the work by George 
Francis [3] :

        

Two views of an eight knot bordering                            King Solomon seal
                       a twisted surface 

Image 5

2.4 Cutting and opening

Definition : Cutting  is an act of separation, of disconnection, done 
along any k-dimensional part of an object of dimension n (>k).

 Any surface can be incised at any of its points, and cut along 
any of its curves. It will create two diffeomorphic curves that will be 
called the lips of the cutting. They belong to the boundary of the sur-
face and from this fact are singular parts.

After cutting of a surface along one of its curve, one of the 
four following situations may happen :

Hole after streching the surface 
remaining connected

 2 disconnected parts
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+

Fig. 13
The four different effects of a cut

Such a cut may separate the surface into disconnected pieces. It hap-
pens each time the curve is the boundary of one or several disks on 
the  surface  (case  2 and case  4 where the surface has  a  curve as 
boundary,  the  curve  along  which  the  cutting  is  done  meets  that 
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boundary into two points, creating with the boundary at least one 
loop which is the boundary of a 2-disk).

3 External modifications

The  cutting  process,  which  may  introduce  separation  into 
pieces, makes a transition between internal and external modifica-
tions.  If  a  separation  has  been  introduced  through  cutting,  con-
versely, it is supposed that the inverse operation of joining the two 
primitive separated pieces is possible. A good glue is all we need.

A gluing process, also named an attachment process, is con-
sidered here as a change on the objects that are attached from the ex-
terior side.

Such an addition is built along domains of attachment : it can 
be a point, a piece of line, a piece of surface. The addition process 
supposes that the two objects that will be attached share a similar 
domain which will be used as domain of attachment.

It  should be noted that  the process  of  adjunction can also 
work internally.

A simple example is the creation of a basket from a rect-
angle, involving cutting, folding, and attachment. There are several 
ways to build this basket. Here is an example :

connected

+  

  2 disconnected parts and hole in one of them
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Fig. 14

When the two domains of attachment belong to the same ob-
ject, the attachment process will be here called an identification.

The Möbius band is a classical result of an identification pro-
cess. Take a band of paper whose shape is a rectangle. Orient the 
two small edges in opposite directions, twist the band an odd num-
ber of times, then you can glue (identify) the two small edges since 
they have now the same orientation.

Fig. 15

Attachment curves are in colour

The handle can be twisted as many 
times one wishes

duck basket
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4 Synthesis

All the objects can be constructed using the following opera-
tions in the preceding sense :

pinching, inflating, folding, cutting, attaching.

Here  are  some  classical  mathematical  objects  that  can  be 
built in that ways. They were sent to me by Patrice Jeener and pro-
duced with the software “surfer”.
      

                    

                                              
Fig. 16

These objects were created by solving only one polynomial 
equation we will  write under the abridged form p(xm,  yn,  zp) = 0. 
Though for one polynomial equations the different classes of singu-
larities  are  limited,  one  can  expect  an  infinite  number  of  shapes 
since the values of the integers m, n and p are themselves infinite : 
the human imagination cannot a priori reach the totality of the vari-
ation and subtle differences that exist between those mathematical 
shapes, all the more we consider here only one dimensional polyno-
mials, whereas we can for instance consider projections onto 2- or 3-
dimensional spaces of objects defined by various types of equations 
in multidimensional spaces. Except for a very few, like the ball or 
the cylinder, most of those mathematical objects do not have any 
significance to us, at this time : they are unfamiliar and considered 
as artificial ; having no meaning, they seem to be cold and lifeless. 
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But we cannot foresee the future. Humanity is evolving. Subjective 
interpretation may be giving way to more effective rational thinking. 
Those objects may get a greater interest because they speak to our 
rationality through an intellectual  training that  teaches  us  how to 
look at them, how to see their properties and qualities. Though they 
may look  richer  by increasing  their  internal  symmetries,  each  of 
these mathematical objects presented individually carries some level 
of melancholy due in part to their isolation.

Many artworks do not consist in the presentation of a single 
object. It happens of course : in that cases, the object has a sufficient 
strength of expression and richness in se, and sometimes appears as 
a composition of various objects. Sculpture, where the qualities of 
the material play an important role, is typical from this perspective.

   

Image 6
Two sculptures by Xavier Bonnet-Eymard

Artists  rather  create  compositions.  Several  standard  components 
play a role in those creations such as light, slightly distorted sym-
metry, abundance (mainly by repetition), perspective (from classical 
to reverse or frontal as in many Chagall’ works). All these elements 
are related to physical fundamental principles and facts.
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Image 7
Repetition in Nature

Maybe  children,  young  and  old  (“Heraclitus  called  chil-
dren’games men’ thoughts”), will enjoy playing with some mathem-
atical objects such as the ones we discussed before.  They will be 
able to build friezes and free standing objects, fill their space with 
new creations, cut new shapes, create and hold new flowers, make 
new connections “à la Chagall” by inserting various objects and ma-
terial in new composition. In that way, mathematics will be, as be-
fore, at the service of art.
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